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Abstract 

One of the most significant environmental concerns in the world, second only to climate change, is plastic garbage, which has 

lately been recognized as having an impact on all living forms, natural environments, and the economy. Given this difficulty, it 

is imperative to look for ecologically friendly alternatives, such as biodegradation, as an alternative to traditional disposal. But 

nothing is known about the processes and effectiveness of plastic biodegradation at the moment. The purpose of this study is to 

demonstrate the detrimental effects that plastic trash has on the ecosystem. Insects and gut microbes are also discussed, with a 

focus on their significant future contribution to the breakdown of plastics. 

 

Keywords: Entomological biodegradation, plastic waste, sustainable entomology, plastic-eating insects, plodia interpunctella 

Introduction 

Since the 1950s, commercial plastic production has 

expanded at an astounding rate. Between 1950 and 2018, an 

estimated 6.3 billion tons of plastic were manufactured 

(Alabi et al., 2019) [1]. At the present growth rate, plastics 

output is projected to quadruple over the next 20 years 

(Lebreton and Andrady, 2019) [2]. Pollution from plastic 

garbage is now widely recognized as a serious 

environmental problem. Up to 6,300 million metric tons of 

plastic garbage have been created so far, according to recent 

research (Geyer et al., 2017) [3]. Nevertheless, less than half 

of the plastic garbage generated was recycled or dumped in 

landfills. Our planet is a "Plastic World", with a significant 

amount of the leftover plastic debris littering the oceans, 

continents, and every other part of the globe (Rochman et 

al., 2013) [4]. 

Hazardous chemicals will be discharged into the atmosphere 

as a result of the careless disposal of plastics on land and 

open-air burning, affecting all living things, natural 

environments, and public health hazards (Alabi et al., 2019) 
[1]. Given this difficulty, it is imperative to look for 

ecologically friendly alternatives for its breakdown, such as 

biodegradation as an alternative to traditional disposal (Ali 

et al., 2021) [5]. One crucial factor in lessening the 

consequences of plastic pollution is plastic biodegradation 

(Wierckx et al., 2018) [6]. The processes and effectiveness of 

plastic biodegradation, however, are not well understood at 

this time. Invertebrates, like insects, are discussed in the 

current review along with their function in the breakdown of 

plastics, with a focus on the potential importance of these 

organisms in the future. 

 

Plastic's Current State 

Over the past several decades, plastic production has seen a 

significant increase, reaching approximately 359 million 

tons by the year 2018 (Lebreton and Andrady, 2019). Due to 

this rapid expansion, plastics have become some of the most 

commonly used materials worldwide. Food, cosmetics, 

chemicals, medications, and detergents are all packaged in 

plastic. Polyethylene (PE) is the most widely used synthetic 

polymer, with an annual global output of around 140 million 

Mg (tonnes) (Sivan, 2011) [7]. Every year, 180 million Mg 

(tonnes) of plastic are produced, and both supply and 

demand are rising. As more people use plastic, the amount 

of plastic pollution in the globe is increasing. By 2050, it is 

anticipated that up to 26 billion tons of plastic garbage 

would be generated, of which over half will end up in 

landfills before entering ecospheres including wetlands and 

seas, causing significant environmental contamination 

(Maharaj Satwika et al., 2024) [8]. 

 

The Disposal of Plastic Waste and Its Impact 

Plastic trash is becoming increasingly frequently 

acknowledged as the most significant environmental issue 

of our day, second only to climate change (Jambeck et al., 

2015) [9]. Landfills containing plastic garbage occupy a large 

amount of space. Large volumes of chemicals are released 

when 10,000 tons of plastic garbage are disposed of in 

landfills, which occupy 0.067 hm2 of land (Lithner et al., 

2011) [10]. These dangerous substances have the potential to 

seep into the soil and impact groundwater and soil quality. 

Lower agricultural yields can occur from PE trash buried in 

soil because it can alter drainage patterns, disrupt soil fauna, 

and degrade soil quality. The rate at which plastic pollution 

enters the ocean ranges from 0.48 to 1.27 million tons 

annually. In addition, the amount of plastic entering the 

ocean is doubling every ten years, which is an amazing rate 

(Crompton, 2007) [11]. 

Particles of plastic pollute the food chain and marine 

environment, especially foods meant for human 

consumption (Lusher et al., 2017) [12]. When plastic debris 

comprising PS, PE, PVC, and PET is burned, dioxins, nitro-

PAHs, and other carcinogenic compounds, such as 

polycyclic aromatic hydrocarbons (PAHs), can be released 

into the air (Al-Salem et al., 2009) [13]. It is more probable 

that harmful pollutants that are eluted from plastic debris or 
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in the form of tiny or microplastic particles would infiltrate 

food chains (Browne et al., 2008) [14] and have an impact on 

crucial ecological species including salt marsh grasses, 

mussels, and corals (Uhrin and Schellinger, 2011) [15]. 

Chemicals linked to plastics and tiny, microplastic debris 

may accumulate in the bodies of people and mussels, 

damaging bodily tissues and cells (Li JY et al., 2023) [16]. 

 

Plastics Degradation Techniques 

Organically the slow rate of plastic decomposition leads to a 

buildup of plastic garbage, which is a major environmental 

hazard. Age, weathering, polymer type, temperature, pH, 

and radiation are some of the variables that impact plastic 

deterioration (Akbay and Özdemir, 2016) [17]. Due to a lack 

of suitable degrading techniques, plastic treatment 

comprises of 77% reclamation, 13% incineration, and 10% 

mechanical and chemical recovery. Because polyethylene 

waste is burned directly, vapours containing a range of 

harmful carcinogens, including ketones and acrolein, as well 

as greenhouse gases, like methane, are released into the air, 

polluting the soil and groundwater (Briassoulis, 2006) [18]. 

Despite the fact that mechanical recycling has been the 

primary method for recovering thermoplastic wastes, most 

recovered goods have had their qualities adversely impacted 

after several production cycles, which results in a low level 

of market attractiveness. Chemical recycling is an approach 

that can recover monomers and other materials from 61 

various types of plastic trash, but how well it works depends 

on how much it costs and how well the catalytic agents 

work (Rahimi and García, 2017) [19]. Although plastic 

biodegradation by bacterial and fungal strains has been 

emphasized as a viable way to eliminate plastic waste 

without causing secondary pollution (Lee et al., 2020) [20], it 

has certain drawbacks, including slowness and the need for 

ideal conditions for biodegradation. A developing 

alternative is the biodegradation of plastic trash by 

arthropods; certain worms that consume plastic have been 

shown to be able to break down plastic and transform it into 

non-hazardous compounds (Bombelli et al., 2017) [21]. 

Extruded polystyrene, polyethylene, polystyrene, polyvinyl 

chloride, polypropylene, polyphenylene sulphide, and 

ethylene-vinyl acetate are the seven types of plastics that 

insects have been known to break down. Although research 

is ongoing, some theories suggest that insects gut bacteria 

and enzymes play a part in the way plastics break down in 

them. 

 

Identifying Insects that Consume Plastics 

1. Lepidoptera 

This order of insects contains moths and butterflies. Among 

the species in the Pyralidae family that are known for 

consuming plastic are the rice meal worm (Corcyra 

cephalonica), bigger wax moth (Galleria mellonella), lesser 

wax moth (Achroia grisella), and Indian meal moth (Plodia 

interpunctella). 

 

2. Waxworm  

Due to their ability to ingest and digest beeswax, G. 

mellonella larvae may chew and swallow PE films, as 

illustrated in Figures 1A and 1B (Khyade, 2018 [22]; Yang et 

al., 2014) [23]. due to their structural similarities, G. 

mellonella's metabolic apparatus for beeswax metabolism 

could be used to PE metabolism. It is nowadays uncertain 

how gut microbiota and G. mellonella enzymes contribute to 

the breakdown of PE in both in vitro and in situ conditions. 

It is required for understanding how G. mellonella enzymes 

and bacteria contributes to the breakdown of PE (Kong et 

al., 2019) [24]. G. mellonella larvae's remarkable capacity to 

use pre-existing metabolic mechanisms to obtain energy 

from PE as their sole food supply (LeMoine et al., 2020) [25]. 

The worms softened thin-film PE shopping bags and 

transformed them into ethylene glycol (Bombelli et al., 

2017) [21]. a study by Peydaei et al. (2020), salivary glands 

can facilitate the breakdown of polyethylene through the 

formation of pits and degradation intermediate with 

carbonyl groups. The function of suspected lipid oxidative 

enzymes is considerably greater in larvae that were fed PE, 

as shown by LeMoine et al. (2020) [25]. 

After being infected with 100 waxworms, a commercial PE 

shopping bag would lose 92 mg of weight in 12 hours 

(Weber et al., 2017) [27]. PE was also broken down by the 

microbial symbionts in the waxworm's intestines. The 

function of intestinal microbial symbionts in insect digestion 

has long been recognized; PE depolymerization has 

occurred in the case of waxworms (Yang et al., 2014 [23]; 

Engel and Moran, 2013) [28]. The guts of G. mellonella have 

been studied for PE biodegradation with Enterobacter sp. 

D1 (Ren et al., 2019) [29]. The gastrointestinal contents of G. 

mellonella were revealed to contain PEDX3, a PE-

degrading fungus Aspergillus flavus. The two PE-degrading 

enzymes suggest that PE MPP remediation is a feasible 

replacement, and A. flavus strain PEDX3 could break down 

microplastic particles (Zhang et al., 2020). [30]. 

  
 (A)  (B) 

 

Fig 1: A. Adult and larvae of Indian meal moth (Plodia interpunctella) B. Adult and larvae of Indian waxworm (G. mellonella) 
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3. Lesser Wax Worm  

 

 
 (A)  (B) 

 

Fig 2: A. Adult male Achroia grisella B. Achroia grisella caterpillar consuming silo-bag 

 
A. grisella can consume silo bags, which are made up of 
three polyethylene layers and one anti-UV layer (Chalup et 
al., 2018) [31]. Lesser waxworms given PE, WC, or PE-WC 
finished their life cycle. The appearance of additional 
carbonyl and alcoholic groups in the frass and an increase in 
unsaturated hydrocarbon in PE samples fed less waxworms 
are indicated the synthesis of biodegraded intermediates 
(Kundungal et al., 2019) [32]. 
 

4. Meal Moths in India 

By chewing and eating polyethylene (PE) packaging films, 

P. interpunctella larvae might harm them (Bowditch, 1997) 
[33]. The synthetic polymers are broken down by gut bacteria 
found in P. interpunctella (Mereghetti et al., 2017) [34]. In 
another investigation, Bacillus sp. YP1 and Enterobacter 
asburiae YT1 were recovered from the intestines of P. 
interpunctella larvae (Yang et al., 2014) [23]. They disrupted 
the PE film's surface and decreased its hydrophobicity after 
28 days of incubation. The midgut larvae included strains of 
E. tabaci and B. subtilis subsp. Spizizenii, which are 
involved in degradation (Mahmoud et al., 2020) [35]. 

 
Table 1: Types of plastics broken down by insects and the microorganisms that live in them 

 

Plastic Type Insect Species Associated Microorganisms Reference 

Polyethylene 

Plodia interpunctella Bacillus sp. YP1, Enterobacter asburiae YT1 Yang et al., 2014 

Galleria mellonella Enterobacter asburiae YT1, Bacillus sp. YP1 Yang et al., 2014 

Achroia grisella Not reported Kundungal et al., 2019 

Corcyra cephalonica Not reported Kesti and Thimmappa, 2019 

Zophobas atratus Pseudomonas aeruginosa Lee et al., 2020 

Polystyrene 
Tenebrio molitor Exiguobacterium sp. YT2 Yang et al., 2015b 

Zophobas atratus Pseudomonas aeruginosa Lee et al., 2020 

Polyphenylene sulphide Zophobas atratus Pseudomonas aeruginosa Lee et al., 2020 

Ethylene-vinyl acetate Tenebrio confusum Not reported Abdulhay, 2020 

Polyvinyl chloride (PVC) Tenebrio molitor Not reported Peng et al., 2020 

 

5. Rice meal worm 

Larvae of C. cephalonica are capable of breaking down 

low-density polyethylene. According to reports, any 

intestinal microorganisms might be the cause of LDPE 

degradation. The digestive tract of these larvae may 

manufacture the enzyme needed for the breakdown of 

LDPE (Kesti and Thimmappa, 2019) [36]. 

Coleoptera 

This group of insects includes weevils and beetles. Some 
species of the Tenebrionidae family, including the meal 
worm (Tenebrio molitor), super worm (Zophobas atratus), 
and confused flour beetle (Tribolium confusum), have been 
discovered as plastic-feeding insects. 
 

Mealworm 

 

 
 

Fig 3: T. molitor 
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T. molitor has the ability to depolymerize and biodegrade 
polystyrene, polyethylene (Ghatge et al., 2020 [37]; Peng et 
al., 2020) [38], polypropylene (Yang et al., 2021) [39], and 
polyvinyl chloride (PVC). It was demonstrated that more 
kinds of mealworms from 12 different locations throughout 
the world has the ability to degrade PS, showing that 
mealworms often manage to do so (Yang et al., 2017) [40]. 
Mealworms are shown to be able to absorb rapidly and 
demolish up to 50% of ingested PS in under 24 hours, based 
on changes in chemical composition, molecular weight, and 
isotopic trace following tracks through the digestive system 
(Yang et al., 2015a) [41]. Exiguobacterium sp. YT2, a strain 
isolated from the gut of m T. molitor, has been found to be 
capable of breaking down 7.5% of the weight of PS in less 
than 60 days in vitro (Yang et al., 2015b) [42]. Brandon et al. 
(2018) studied how yellow mealworms degrade PE and 
plastic mixtures. Up to 49.0 ± 1.4% of the PE ingested 
converted to CO2 after being incubated with larvae. The 
molecular weights of the ingested polymer lowered by 40.1 
± 8.5% in mealworms fed PE. 
According to studies adopting next-generation sequencing 
analysis, Kosakonia sp. and Citrobacter sp. are frequently 
found in the gut microbiome (Brandon et al., 2018) [43]. 
Polyethylene can be broken down via mealworms using 
enzymes including cellulose and esterase (Przemieniecki et 
al., 2020) [44]. T. molitor can biodegrade PP by gut microbe-
dependent depolymerization with a range of microbiomes, 
according to Yang et al. (2021) [39]. T. obscurus ingested PS 
far quicker than T. molitor. TGA showed that T. obscurus 
larvae efficiently degraded PS according to the percentage 
of PS residue (Peng et al., 2019) [45]. 
 

6. Super worm 

Polystyrene, polyethylene, and polyphenylene sulfide (PPS) 
foams are consumed by Z. atratus larvae (Li et al., 2020) 
[46]. Pseudomonas aeruginosa gut bacteria in Z. atratus have 
the ability to break down PS, PE, and PPS. The structure 
and characteristics of intermediate molecules produced 
during plastic biodegradation may have an impact on 
bacterial growth rates, and P. aeruginosa growth rates were 
not necessarily proportionate to biodegradation rates (Lee et 
al., 2020) [20]. 
 

7. Confused flour beetle 

T. confusum may break down polyethylene foam, 
polystyrene, and ethylene-vinyl acetate. The larvae's mass 
weight increased over the trial, suggesting that plastic 
materials are ineffective as an energy source for larvae other 
than survival. According to Abdulhay (2020) [47], larvae fed 
PS, PE, and EVA lost 26.2, 31.4, and 45.8% of their weight, 
respectively. P. davidis larvae can consume PS, and after 14 
days, they can survive only on Styrofoam by feeding each 
larva 34.27 ± 4.04 mg of PS foam. Fourier-transform 
infrared spectroscopy (FTIR) was used to confirm that the 
ingested Styrofoam had oxidized. On the PS film, which 
was separated from the stomach, Serratia sp. were grown 
(Woo et al., 2020) [48]. 
 

Conclusion 

The development of innovative remediation techniques to 
eradicate plastic pollution may prove beneficial. The 
existence of possible bacteria has been suggested by recent 
methods on the breakdown of plastic by insect groups. In 
particular, the finding of symbiotic insect microbiota linked 
to plastic breakdown requires more investigation into the 
biodegradation of plastics. Insects' whole digestive systems 

contain gut microbes and digestive enzymes, which are 
crucial to their general physiological functioning. The 
worries about plastic pollution must be resolved, 
nevertheless, by thoroughly examining the molecular 
mechanisms behind the full physiological process of plastic 
decomposition in the insect's stomach. 
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